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3D Modeling

• Polygonal meshes capture the shape of complex 
3D objects in simple data structures.
– Platonic solids, the Buckyball, geodesic domes, 

prisms.

– Extruded or swept shapes, and surfaces of revolution.

– Solids with smoothly curved surfaces.

• Animated Particle systems: each particle 
responds to conditions.

• Physically based systems: the various objects in 
a scene are modeled as connected by springs, 
gears, electrostatic forces, gravity, or other 
mechanisms. 



Particle Systems Example

• Particle system showing water droplets in a 

fountain. (Courtesy of Philipp Crocoll); 

Starfield simulation (Courtesy of Ge Wang)



Polygonal Meshes

• A polygonal mesh is a collection of 

polygons (faces) that approximate the 

surface of a 3D object.

– Examples: surfaces of sphere, cone, cylinder 

made of polygons (Ch. 5); barn (below).



Polygonal Meshes (2)

• Polygons are easy to represent (by a 

sequence of vertices) and transform.

• They have simple properties (a single 

normal vector, a well-defined inside and 

outside, etc.).

• They are easy to draw (using a polygon-fill 

routine, or by mapping texture onto the 

polygon).



Polygonal Meshes (3)

• Meshes are a standard way of 

representing 3D objects in graphics.

• A mesh can approximate the surface to 

any degree of accuracy by making the 

mesh finer or coarser.

• We can also smooth the polygon edges 

using rendering techniques.



Polygonal Meshes (4)

• Meshes can model both solid shapes and 
thin skins. 

– The object is solid if the polygonal faces fit 
together to enclose space. 

– In other cases, the faces fit together without 
enclosing space, and so they represent an 
infinitesimally thin surface. 

• In both cases we call the collection of 
polygons a polygonal mesh (or simply a 
mesh). 



Polygonal Meshes (5)

• A polygonal mesh is described by a list of 
polygons, along with information about the 
direction in which each polygon is facing. 

• If the mesh represents a solid, each face has an 
inside and an outside relative to the rest of the 
mesh.  

• In such a case, the directional information is 
often simply the outward pointing normal vector
to the plane of the face used in the shading 
process.



Polygonal Meshes (6)

• The normal direction to a face determines 

its brightness.



Polygonal Meshes (7)

• For some objects, we associate a normal 
vector to each vertex of a face rather than 
one vector to an entire face. 
– We use meshes, which represent objects with 

smoothly curved faces such as a sphere or 
cylinder. We will refer to the faces of such 
objects, but with the idea that there is a 
“smooth-underlying surface”.

– When we display such an object, we will want 
to de-emphasize the individual faces of the 
object in order to make the object look 
smooth.  



Polygonal Meshes (8)

• Each vertex V1, V2, V3, and V4 defining the side wall of 
the barn has the same normal n1, the normal vector to 
the side wall.  

• But vertices of the front wall, such as V5, will use normal 
n2. (Note that vertices V1 and V5 are located at the same 
point in space, but use different normals.) 



Polygonal Meshes (9)

• For the smoothly curved surface of the cylinder, 

both vertex V1 of face F1 and vertex V2 on face 

F2 use the same normal n, the vector 

perpendicular to the underlying smooth surface. 



Defining a Polygonal Mesh

• A mesh consists of 3 lists: the vertices of 

the mesh, the outside normal at each 

vertex, and the faces of the mesh.

• Example: the basic barn has 7 polygonal 

faces and 10 vertices (each shared by 3 

faces).



Defining a Polygonal Mesh (2)

• It has a square floor 

one unit on a side. 

• Because the barn has 

flat walls, there are 

only 7 distinct normal 

vectors involved, the 

normal to each face 

as shown.



Defining a Polygonal Mesh (3)

• The vertex list reports the locations of the 

distinct vertices in the mesh. 

• The list of normals reports the directions of 

the distinct normal vectors that occur in 

the model. 

• The face list indexes into the vertex and 

normal lists. 



Vertex List for the Barn
vertex x y z

0 0 0 0

1 1 0 0

2 1 1 0

3 0.5 1.5 0

4 0 1 0

5 0 0 1

6 1 0 1

7 1 1 1

8 0.5 1.5 10

9 0 1 1



Normal List for the Barn

• The normal 

list (as unit 

vectors, to 

the 7 basic 

planes or 

polygons).

normal nx ny nz

0 -1 0 0

1 -0.707 0.707 0

2 0.707 0.707 0

3 1 0 0

4 0 -1 0

5 0 0 1

6 0 0 -1



Face List for the Barn

Face Vertices Normal

0 (left) 0, 5, 9, 4 0,0,0,0

1 (roof left) 3, 4, 9, 8 1,1,1,1

2 (roof right) 2, 3, 8, 7 2, 2, 2,2

3 (right) 1, 2, 7, 6 3, 3, 3, 3

4 (bottom) 0, 1, 6, 5 4, 4, 4, 4

5 (front) 5, 6, 7, 8, 9 5, 5, 5, 5, 5

6 (back) 0, 4, 3, 2, 1 6, 6, 6, 6, 6



Defining a Polygonal Mesh (4) 

• Only the indices of the vertices and normals are 
used. 

• The list of vertices for a face begins with any 
vertex in the face, and then proceeds around the 
face vertex by vertex until a complete circuit has 
been made. 
– There are two ways to traverse a polygon: clockwise 

and counterclockwise. For instance, face #5 above 
could be listed as (5, 6, 7, 8, 9) or (9, 8, 7, 6, 5). 

– Convention: Traverse the polygon 
counterclockwise as seen from outside the object.



Defining a Polygonal Mesh (5)

• Using this order, if you traverse around the 
face by walking from vertex to vertex, the 
inside of the face is on your left. 

• Using the convention allows algorithms to 
distinguish with ease the front from the 
back of a face.

• If we use an underlying smooth surface, 
such as a cylinder, normals are computed 
for that surface.



3D File Formats

• There is no standard file format.

• Some formats have been found to be efficient and easy 
to use: for example, the .qs file format developed by the 
Stanford University Computer Graphics Laboratory.  This 
particular mesh model has 2,748,318 points (about 
5,500,000 triangles) and is based on 566,098 vertices.  



3D File Formats (2)

• OpenGL has the capability to load a 

variety of 3D model formats such as (but 

not limited to) 3DS, VRML, PLY, MS3D, 

ASE and OBJ.  

• A number of resources are available on 

the book’s companion web site that cover 

loading 3D mesh models into OpenGL. 



Calculating Normals

• Take any three non-collinear points on the face, 
V1, V2, and V3, and compute the normal as their 
cross product m = (V1 - V2) × (V3 - V2) and 
normalize it to unit length.
– If the two vectors V1 - V2 and V3 - V2 are nearly 

parallel, the cross product will be very small and 
numerical inaccuracies may result. 

– The polygon may not be perfectly planar. Thus the 
surface represented by the vertices cannot be truly 
flat. We need to form some average value for the 
normal to the polygon, one that takes into 
consideration all of the vertices. 



Newell's Method for Normals

• Given N vertices, define next(i) = ni = (i+1) 

mod N.  

• Traverse the vertices for the face in 

counter-clockwise order from the outside.

• The normal given by the values on the 

next slide points to the outside (front) of 

the face. 



Normal (Newell’s Method)
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Properties of Meshes

• A closed mesh represents a solid object (which 
encloses a volume).

• A mesh is connected if there is an unbroken 
path along the edges of the mesh between any 
two vertices.

• A mesh is simple if it has no holes. Example: a 
sphere is simple; a torus is not.

• A mesh is planar if every face is a plane 
polygon. Triangular meshes are frequently used 
to enforce planarity.



Properties of Meshes (2)

• A mesh is convex if the line connecting any two 

interior points is entirely inside the mesh.

• Exterior connecting lines are shown for non-

convex objects below (step and torus).



Meshes for Drawing Non-physical 

Objects
• The figure labeled 

IMPOSSIBLE looks 
impossible but is not.

• This object can be 
represented by a mesh.

• Gershon Elber’s web site 
(http://www.cs.technion.a
c.il/~gershon/EscherForR
eal/) presents a collection 
of physically impossible 
objects, and describes 
how they can be modeled 
and drawn. 

PYRAMID

DONUT

BARNIMPOSSIBLE

http://www.cs.technion/


“Thin-skin” Meshes Representing 

Non-solid Objects



Working with Meshes in a Program

• We want an efficient Mesh class that 

makes it easy to create and draw the 

object. 

• Since mesh data is frequently stored in a 

file, we also need simple ways to read and 

write mesh files. 

• Code for classes VertexID, Face, and 

Mesh is in Fig. 6.15.



Meshes in a Program (2)

• The Face data type is a list of vertices and the 

normal vector associated with each vertex in the 

face. 

• It is an array of index pairs; the normal to the vth

vertex of the fth face has value 

norm[face[f].vert[v].normIndex].

• This indexing scheme is quite orderly and easy 

to manage, and it allows rapid random access 

indexing into the pt[ ] array.



Example (tetrahedron & 

representation) 



Drawing the Mesh Object

• Mesh::draw() (Fig. 6.17) traverses the array of 
faces in the mesh object, and for each face 
sends the list of vertices and their normals down 
the graphics pipeline. 

• In OpenGL, to specify that subsequent vertices 
are associated with normal vector m, execute  
glNormal3f (m.x, m.y, m.z).

• For proper shading, these vectors must be 
normalized. Otherwise, place 
glEnable(GL_NORMALIZE) in the init() function. 
This requests that OpenGL automatically 
normalize all normal vectors.



SDL and Meshes

• To use SDL, simply develop the Mesh class 

from the Shape class (as SDL does for you) and 

add the method drawOpenGL(). The book’s 

companion web site gives full details on the 

Shape class and SDL’s supporting classes.  

• The Scene class that reads SDL files is already 

set to accept the keyword mesh, followed by the 

name of the file that contains the mesh 

description: e.g., mesh pawn.3vn



Using SDL to Create and Draw 

Meshes 

• The mesh data are in a file with suffix .3vn.

• The first line of the file lists the number of 
vertices, number of normals, and number 
of faces, separated by whitespace.

• The second line begins the list of vertices, 
giving their x, y and z coordinates 
separated by whitespace.

– Multiple vertex coordinates may be listed on a 
single line.



Using SDL (2)

• After all vertices have been listed, the list of 
normals begins. A normal is specified by nx, ny, 
and nz, separated by whitespace.

– Multiple normal values may be listed on a 
single line.

• The list of faces follows. A face is specified by 
the number of vertices it has, the list of vertex 
indices (in counter-clockwise order from 
outside), and the list of normal indices (same 
order as the vertex indices). 



Using SDL (3)

• We can also use the matrix manipulation 

functions of SDL to position and orient the 

mesh drawing.  

• Example:

– push translate 3 5 4 scale 3 3 3 mesh 

pawn.3vn pop



Meshes for Polyhedra

• Polyhedron: connected mesh of simple 
planar polygons that encloses a finite 
volume.

– Every edge is shared by exactly 2 faces.

– At least 3 edges meet at each vertex.

– Faces do not interpenetrate. They touch 
either not at all, or only along their common 
edge.

– Euler's formula: V + F - E = 2 for a simple 
polyhedron.



Schlegel Diagrams

• A Schlegel diagram reveals the structure 

of a polygon. 

• It views the polyhedron from a point just 

outside the center of one of its faces.

• The front face appears as a large polygon 

surrounding the rest of the faces.



Schlegel Diagrams (2)

• Part a) shows the Schlegel diagram of a 

pyramid, and parts b) and c) show two 

different Schlegel diagrams for the basic 

barn. (Which faces are closest to the 

eye?).



Prisms

• A prism is formed by moving a regular 

polygon along a straight line.

• When the line is perpendicular to the 

polygon, the prism is a right prism.

P

da). b). c).



Platonic Solids

• All the faces are identical and each is a 

regular polygon. 



Duals

• Every Platonic solid P 
has a dual Platonic solid 
D.  The vertices vi of D 
are the centers of faces 
of P, calculated as 

• The duals are 
tetrahedron-tetrahedron, 
hexahedron-octahedron, 
dodecahedron-
icosahedron. 
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Flattened Models

• To keep track of 

vertex and face 

numbering, we 

use a flat model, 

which is made by 

cutting along 

certain edges of 

each solid and 

unfolding it to lie 

flat. 



Normal Vectors for the Platonic 

Solids
• Normals can be found 

using Newell’s method.

• Also, because of the high 
degree of symmetry of a 
Platonic solid, if the solid 
is centered at the 
origin, the normal vector 
to each face is the vector 
from the origin to the 
center of the face (the 
average of the vertices of 
the face).



Vertex and Face lists for a 

Tetrahedron

• For the unit cube having vertices (±1,±1,±1), and 
the tetrahedron with one vertex at (1,1,1), the 
tetrahedron has vertex and face lists given 
below. 

Vertex list Face list

vertex x y z Face # vertices

0 1 1 1 0 1, 2, 3 

1 1 -1 -1 1 0, 3, 2 

2 -1 -1 1 2 0, 1, 3 

3 -1 1 -1 3 0, 2, 1 



Icosahedron

• This figure shows that three mutually 

perpendicular golden rectangles inscribe 

the icosahedron. A vertex list may be read 

directly from this picture. 



Icosahedron (2)

• We choose to align each golden rectangle 

with a coordinate axis. For convenience, 

we define one rectangle so that its longer 

edge extends from -1 to 1 along the x-axis, 

and its shorter edge extends from -φ to φ, 

where φ = 0.618 is the reciprocal of the 

golden ratio Φ.



Vertex List for the Icosahedron

Vertex x y z Vertex x y z

0 0 1 φ 6 φ 0 1

1 0 1 -φ 7 -φ 0 1

2 1 φ 0 8 φ 0 -1

3 1 -φ 0 9 -φ 0 -1

4 0 -1 -φ 10 -1 φ 0

5 0 -1 φ 11 -1 -φ 0



Flattened Model for Icosahedron
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Prism Model for Icosahedron



Flattened Model for Dodecahedron



Archimedean Solids

• Have more than one type of polygon as faces; 

semi-regular.

• Examples: truncated cube (octagon and triangle)



Truncated Cube

• Each edge of the cube is divided into three 

parts; the middle part of length              

and the middle portion of each             

edge is joined to its neighbors. 

• Thus if an edge of the cube has endpoints 

C and D, two new vertices, V and W, are 

formed as the affine combinations
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Number of Archimedean Solids

• Given the constraints that faces must be 

regular polygons, and that they must occur 

in the same arrangement about each 

vertex, there are only 13 possible 

Archimedean solids. 

• Archimedean solids have sufficient  

symmetry that the normal vector to each 

face is found using the center of the face.



Truncated Icosahedron

• The truncated icosahedron (soccer ball) consists 
of regular hexagons and pentagons. 

• More recently this shape has been named the 
Buckyball after Buckminster Fuller, because of 
his interest in geodesic structures similar to this.

• Crystallographers have discovered that 60 
atoms of carbon can be arranged at the vertices 
of the truncated icosahedron, producing a new 
kind of carbon molecule that is neither graphite 
nor diamond. 

• The material has been named Fullerene.  



The Buckyball and Flattened 

Version (Partial)


