
Computer Graphics using OpenGL,

3rd Edition

F. S. Hill, Jr. and S. Kelley

Chapter 6.1-3

Modeling Shapes with

Polygonal Meshes

S. M. Lea

University of North Carolina at Greensboro

© 2007, Prentice Hall

3D Modeling

• Polygonal meshes capture the shape of complex
3D objects in simple data structures.
– Platonic solids, the Buckyball, geodesic domes,

prisms.

– Extruded or swept shapes, and surfaces of revolution.

– Solids with smoothly curved surfaces.

• Animated Particle systems: each particle
responds to conditions.

• Physically based systems: the various objects in
a scene are modeled as connected by springs,
gears, electrostatic forces, gravity, or other
mechanisms.

Particle Systems Example

• Particle system showing water droplets in a

fountain. (Courtesy of Philipp Crocoll);

Starfield simulation (Courtesy of Ge Wang)

Polygonal Meshes

• A polygonal mesh is a collection of

polygons (faces) that approximate the

surface of a 3D object.

– Examples: surfaces of sphere, cone, cylinder

made of polygons (Ch. 5); barn (below).

Polygonal Meshes (2)

• Polygons are easy to represent (by a

sequence of vertices) and transform.

• They have simple properties (a single

normal vector, a well-defined inside and

outside, etc.).

• They are easy to draw (using a polygon-fill

routine, or by mapping texture onto the

polygon).

Polygonal Meshes (3)

• Meshes are a standard way of

representing 3D objects in graphics.

• A mesh can approximate the surface to

any degree of accuracy by making the

mesh finer or coarser.

• We can also smooth the polygon edges

using rendering techniques.

Polygonal Meshes (4)

• Meshes can model both solid shapes and
thin skins.

– The object is solid if the polygonal faces fit
together to enclose space.

– In other cases, the faces fit together without
enclosing space, and so they represent an
infinitesimally thin surface.

• In both cases we call the collection of
polygons a polygonal mesh (or simply a
mesh).

Polygonal Meshes (5)

• A polygonal mesh is described by a list of
polygons, along with information about the
direction in which each polygon is facing.

• If the mesh represents a solid, each face has an
inside and an outside relative to the rest of the
mesh.

• In such a case, the directional information is
often simply the outward pointing normal vector
to the plane of the face used in the shading
process.

Polygonal Meshes (6)

• The normal direction to a face determines

its brightness.

Polygonal Meshes (7)

• For some objects, we associate a normal
vector to each vertex of a face rather than
one vector to an entire face.
– We use meshes, which represent objects with

smoothly curved faces such as a sphere or
cylinder. We will refer to the faces of such
objects, but with the idea that there is a
“smooth-underlying surface”.

– When we display such an object, we will want
to de-emphasize the individual faces of the
object in order to make the object look
smooth.

Polygonal Meshes (8)

• Each vertex V1, V2, V3, and V4 defining the side wall of
the barn has the same normal n1, the normal vector to
the side wall.

• But vertices of the front wall, such as V5, will use normal
n2. (Note that vertices V1 and V5 are located at the same
point in space, but use different normals.)

Polygonal Meshes (9)

• For the smoothly curved surface of the cylinder,

both vertex V1 of face F1 and vertex V2 on face

F2 use the same normal n, the vector

perpendicular to the underlying smooth surface.

Defining a Polygonal Mesh

• A mesh consists of 3 lists: the vertices of

the mesh, the outside normal at each

vertex, and the faces of the mesh.

• Example: the basic barn has 7 polygonal

faces and 10 vertices (each shared by 3

faces).

Defining a Polygonal Mesh (2)

• It has a square floor

one unit on a side.

• Because the barn has

flat walls, there are

only 7 distinct normal

vectors involved, the

normal to each face

as shown.

Defining a Polygonal Mesh (3)

• The vertex list reports the locations of the

distinct vertices in the mesh.

• The list of normals reports the directions of

the distinct normal vectors that occur in

the model.

• The face list indexes into the vertex and

normal lists.

Vertex List for the Barn
vertex x y z

0 0 0 0

1 1 0 0

2 1 1 0

3 0.5 1.5 0

4 0 1 0

5 0 0 1

6 1 0 1

7 1 1 1

8 0.5 1.5 10

9 0 1 1

Normal List for the Barn

• The normal

list (as unit

vectors, to

the 7 basic

planes or

polygons).

normal nx ny nz

0 -1 0 0

1 -0.707 0.707 0

2 0.707 0.707 0

3 1 0 0

4 0 -1 0

5 0 0 1

6 0 0 -1

Face List for the Barn

Face Vertices Normal

0 (left) 0, 5, 9, 4 0,0,0,0

1 (roof left) 3, 4, 9, 8 1,1,1,1

2 (roof right) 2, 3, 8, 7 2, 2, 2,2

3 (right) 1, 2, 7, 6 3, 3, 3, 3

4 (bottom) 0, 1, 6, 5 4, 4, 4, 4

5 (front) 5, 6, 7, 8, 9 5, 5, 5, 5, 5

6 (back) 0, 4, 3, 2, 1 6, 6, 6, 6, 6

Defining a Polygonal Mesh (4)

• Only the indices of the vertices and normals are
used.

• The list of vertices for a face begins with any
vertex in the face, and then proceeds around the
face vertex by vertex until a complete circuit has
been made.
– There are two ways to traverse a polygon: clockwise

and counterclockwise. For instance, face #5 above
could be listed as (5, 6, 7, 8, 9) or (9, 8, 7, 6, 5).

– Convention: Traverse the polygon
counterclockwise as seen from outside the object.

Defining a Polygonal Mesh (5)

• Using this order, if you traverse around the
face by walking from vertex to vertex, the
inside of the face is on your left.

• Using the convention allows algorithms to
distinguish with ease the front from the
back of a face.

• If we use an underlying smooth surface,
such as a cylinder, normals are computed
for that surface.

3D File Formats

• There is no standard file format.

• Some formats have been found to be efficient and easy
to use: for example, the .qs file format developed by the
Stanford University Computer Graphics Laboratory. This
particular mesh model has 2,748,318 points (about
5,500,000 triangles) and is based on 566,098 vertices.

3D File Formats (2)

• OpenGL has the capability to load a

variety of 3D model formats such as (but

not limited to) 3DS, VRML, PLY, MS3D,

ASE and OBJ.

• A number of resources are available on

the book’s companion web site that cover

loading 3D mesh models into OpenGL.

Calculating Normals

• Take any three non-collinear points on the face,
V1, V2, and V3, and compute the normal as their
cross product m = (V1 - V2) × (V3 - V2) and
normalize it to unit length.
– If the two vectors V1 - V2 and V3 - V2 are nearly

parallel, the cross product will be very small and
numerical inaccuracies may result.

– The polygon may not be perfectly planar. Thus the
surface represented by the vertices cannot be truly
flat. We need to form some average value for the
normal to the polygon, one that takes into
consideration all of the vertices.

Newell's Method for Normals

• Given N vertices, define next(i) = ni = (i+1)

mod N.

• Traverse the vertices for the face in

counter-clockwise order from the outside.

• The normal given by the values on the

next slide points to the outside (front) of

the face.

Normal (Newell’s Method)

  nii

N

i

niix zzyyn 




1

0

  nii

N

i

niiz yyxxn 




1

0

  nii

N

i

niiy xxzzn 




1

0

Properties of Meshes

• A closed mesh represents a solid object (which
encloses a volume).

• A mesh is connected if there is an unbroken
path along the edges of the mesh between any
two vertices.

• A mesh is simple if it has no holes. Example: a
sphere is simple; a torus is not.

• A mesh is planar if every face is a plane
polygon. Triangular meshes are frequently used
to enforce planarity.

Properties of Meshes (2)

• A mesh is convex if the line connecting any two

interior points is entirely inside the mesh.

• Exterior connecting lines are shown for non-

convex objects below (step and torus).

Meshes for Drawing Non-physical

Objects
• The figure labeled

IMPOSSIBLE looks
impossible but is not.

• This object can be
represented by a mesh.

• Gershon Elber’s web site
(http://www.cs.technion.a
c.il/~gershon/EscherForR
eal/) presents a collection
of physically impossible
objects, and describes
how they can be modeled
and drawn.

PYRAMID

DONUT

BARNIMPOSSIBLE

http://www.cs.technion/

“Thin-skin” Meshes Representing

Non-solid Objects

Working with Meshes in a Program

• We want an efficient Mesh class that

makes it easy to create and draw the

object.

• Since mesh data is frequently stored in a

file, we also need simple ways to read and

write mesh files.

• Code for classes VertexID, Face, and

Mesh is in Fig. 6.15.

Meshes in a Program (2)

• The Face data type is a list of vertices and the

normal vector associated with each vertex in the

face.

• It is an array of index pairs; the normal to the vth

vertex of the fth face has value

norm[face[f].vert[v].normIndex].

• This indexing scheme is quite orderly and easy

to manage, and it allows rapid random access

indexing into the pt[] array.

Example (tetrahedron &

representation)

Drawing the Mesh Object

• Mesh::draw() (Fig. 6.17) traverses the array of
faces in the mesh object, and for each face
sends the list of vertices and their normals down
the graphics pipeline.

• In OpenGL, to specify that subsequent vertices
are associated with normal vector m, execute
glNormal3f (m.x, m.y, m.z).

• For proper shading, these vectors must be
normalized. Otherwise, place
glEnable(GL_NORMALIZE) in the init() function.
This requests that OpenGL automatically
normalize all normal vectors.

SDL and Meshes

• To use SDL, simply develop the Mesh class

from the Shape class (as SDL does for you) and

add the method drawOpenGL(). The book’s

companion web site gives full details on the

Shape class and SDL’s supporting classes.

• The Scene class that reads SDL files is already

set to accept the keyword mesh, followed by the

name of the file that contains the mesh

description: e.g., mesh pawn.3vn

Using SDL to Create and Draw

Meshes

• The mesh data are in a file with suffix .3vn.

• The first line of the file lists the number of
vertices, number of normals, and number
of faces, separated by whitespace.

• The second line begins the list of vertices,
giving their x, y and z coordinates
separated by whitespace.

– Multiple vertex coordinates may be listed on a
single line.

Using SDL (2)

• After all vertices have been listed, the list of
normals begins. A normal is specified by nx, ny,
and nz, separated by whitespace.

– Multiple normal values may be listed on a
single line.

• The list of faces follows. A face is specified by
the number of vertices it has, the list of vertex
indices (in counter-clockwise order from
outside), and the list of normal indices (same
order as the vertex indices).

Using SDL (3)

• We can also use the matrix manipulation

functions of SDL to position and orient the

mesh drawing.

• Example:

– push translate 3 5 4 scale 3 3 3 mesh

pawn.3vn pop

Meshes for Polyhedra

• Polyhedron: connected mesh of simple
planar polygons that encloses a finite
volume.

– Every edge is shared by exactly 2 faces.

– At least 3 edges meet at each vertex.

– Faces do not interpenetrate. They touch
either not at all, or only along their common
edge.

– Euler's formula: V + F - E = 2 for a simple
polyhedron.

Schlegel Diagrams

• A Schlegel diagram reveals the structure

of a polygon.

• It views the polyhedron from a point just

outside the center of one of its faces.

• The front face appears as a large polygon

surrounding the rest of the faces.

Schlegel Diagrams (2)

• Part a) shows the Schlegel diagram of a

pyramid, and parts b) and c) show two

different Schlegel diagrams for the basic

barn. (Which faces are closest to the

eye?).

Prisms

• A prism is formed by moving a regular

polygon along a straight line.

• When the line is perpendicular to the

polygon, the prism is a right prism.

P

da). b). c).

Platonic Solids

• All the faces are identical and each is a

regular polygon.

Duals

• Every Platonic solid P
has a dual Platonic solid
D. The vertices vi of D
are the centers of faces
of P, calculated as

• The duals are
tetrahedron-tetrahedron,
hexahedron-octahedron,
dodecahedron-
icosahedron.







1

0

1 n

i

iv
n

c

Flattened Models

• To keep track of

vertex and face

numbering, we

use a flat model,

which is made by

cutting along

certain edges of

each solid and

unfolding it to lie

flat.

Normal Vectors for the Platonic

Solids
• Normals can be found

using Newell’s method.

• Also, because of the high
degree of symmetry of a
Platonic solid, if the solid
is centered at the
origin, the normal vector
to each face is the vector
from the origin to the
center of the face (the
average of the vertices of
the face).

Vertex and Face lists for a

Tetrahedron

• For the unit cube having vertices (±1,±1,±1), and
the tetrahedron with one vertex at (1,1,1), the
tetrahedron has vertex and face lists given
below.

Vertex list Face list

vertex x y z Face # vertices

0 1 1 1 0 1, 2, 3

1 1 -1 -1 1 0, 3, 2

2 -1 -1 1 2 0, 1, 3

3 -1 1 -1 3 0, 2, 1

Icosahedron

• This figure shows that three mutually

perpendicular golden rectangles inscribe

the icosahedron. A vertex list may be read

directly from this picture.

Icosahedron (2)

• We choose to align each golden rectangle

with a coordinate axis. For convenience,

we define one rectangle so that its longer

edge extends from -1 to 1 along the x-axis,

and its shorter edge extends from -φ to φ,

where φ = 0.618 is the reciprocal of the

golden ratio Φ.

Vertex List for the Icosahedron

Vertex x y z Vertex x y z

0 0 1 φ 6 φ 0 1

1 0 1 -φ 7 -φ 0 1

2 1 φ 0 8 φ 0 -1

3 1 -φ 0 9 -φ 0 -1

4 0 -1 -φ 10 -1 φ 0

5 0 -1 φ 11 -1 -φ 0

Flattened Model for Icosahedron

13 3 0 6 17
16107418

2
1

5

1112

15
8

9

1914

11 11

10

97

0 1
11

9

482654

11 7

5

4 4

8

3

Prism Model for Icosahedron

Flattened Model for Dodecahedron

Archimedean Solids

• Have more than one type of polygon as faces;

semi-regular.

• Examples: truncated cube (octagon and triangle)

Truncated Cube

• Each edge of the cube is divided into three

parts; the middle part of length

and the middle portion of each

edge is joined to its neighbors.

• Thus if an edge of the cube has endpoints

C and D, two new vertices, V and W, are

formed as the affine combinations

 21

1


A

D
A

C
A

V
2

1

2

1 



 D

A
C

A
W

2

1

2

1 





Number of Archimedean Solids

• Given the constraints that faces must be

regular polygons, and that they must occur

in the same arrangement about each

vertex, there are only 13 possible

Archimedean solids.

• Archimedean solids have sufficient

symmetry that the normal vector to each

face is found using the center of the face.

Truncated Icosahedron

• The truncated icosahedron (soccer ball) consists
of regular hexagons and pentagons.

• More recently this shape has been named the
Buckyball after Buckminster Fuller, because of
his interest in geodesic structures similar to this.

• Crystallographers have discovered that 60
atoms of carbon can be arranged at the vertices
of the truncated icosahedron, producing a new
kind of carbon molecule that is neither graphite
nor diamond.

• The material has been named Fullerene.

The Buckyball and Flattened

Version (Partial)

